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Summary 

Seismic reservoir characterization workflows such as rock 

properties prediction are highly dependent on and limited by 

the quality and resolution of the input data. In this study, a 

multi-attribute Random Forest machine learning analysis 

applied to spectrally extrapolated seismic data is 
implemented to increase both vertical and lateral seismic 

resolution. This workflow leads to improved detection of 

thin layers, definition of stratigraphic and structural 

connectivity, and prediction of rock properties. We compare 
the results of identical Random Forest processes applied to 

both the original and spectrally extrapolated seismic data. A 

suite of seismic attributes is generated and a subset of these 

attributes is selected using step-wise regression for 
prediction of 3D acoustic impedance. This approach is 

illustrated using seismic and well data from the Maui oil and 

gas field located in offshore New Zealand. 

 
Random Forest Theory 

 
Machine learning methods have become commonplace for 

seismic data applications. Random Forest is an ensemble 

machine learning technique that uses bagged decision trees 

with sample replacement in order to predict target variables 
from observations (attributes). The target variables can be 

acoustic, elastic or petrophysical properties. The average set 

of values from the suite of decision trees is taken as the 

solution, which decreases the variance of the model without 
increasing the bias, thereby boosting the immunity of the 

algorithm to over-training. Figure 1 illustrates the basic 

architecture of the Random Forest method (Chakure, 2019). 

 

Figure 1: Random Forest scheme using a set of 

decision trees (Chakure, 2019). 

The Random Forest algorithm (and other Machine learning 

techniques) naturally boosts the frequency content at the 

location of the training well(s), an effect of the non-linear 

mapping of the seismic attributes into the log domain 
containing higher frequencies. However, since the seismic 

data themselves are narrower band, the accuracy of the 

predicted high frequency content decays as rock properties 

(and therefore the information content of the attributes) vary 
laterally with distance from the well(s). In order to mitigate 

this effect, we use Spectral Extrapolation as input to Random 

Forest and compare with the conventional implementation 

using seismic data as input. 
 

Spectral Extrapolation 

 

When exploring for or producing from thin reservoirs, 

resolution is critical for accurate detection and 

characterization. Spectral Extrapolation is a process based 

on Spectral Inversion (Puryear and Castagna, 2008) for 

extending the bandwidth of stacked seismic data. It is known 

that simply boosting the frequencies at the edges of the 

wavelet band or outside the wavelet band deleteriously 
increases the noise component in the data. Spectral 

Extrapolation instead uses higher signal/noise information 

within the wavelet band to extrapolate to low and/or high 

frequencies. In this work, we limit the extrapolation to the 
high end of the spectrum. 

 

Case Study Example 

We apply our workflow to the New Zealand Maui field 

seismic data set. The Taranaki basin is a large Upper 

Cretaceous-Cenozoic sedimentary basin in the New Zealand 

area. It is part of a series of interconnected basins, which lie 

both onshore and offshore along the west coasts. They 

extend seaward beyond the edge of the continental shelf, and 

landward to the Permo-Jurassic greywackes and claystones 

forming the anticlinal axial ranges of New Zealand (Katz, 

1974). Located in the central portion of the Taranaki basin 

and bounded to the east by the Cape Egmont fault zone with 

2134 meters of throw (McBeath, 1977), the Maui field is the 

largest oil and gas field in New Zealand. Production is from 

Eocene sandstone reservoirs within the coal-bearing Kapuni 

Formation, deposited in a coastal plain fluvio-marine 

environment. The reservoir at the validation well is 

approximately 2780 meters below sea level and 15 meters 

thick, with significant thinning away from the well. 
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Figure 5: Amplitude spectra of the original seismic 

data and Spectral Extrapolation 

 
 

A) Workflow 

Our post-stack workflow comprises well ties followed by 

Spectral Extrapolation, attribute generation and Random 

Forest prediction of acoustic impedance (Figure 2). 
 

 
Figure 2: Post-stack Workflow with Spectral Extrapolation 

and Random Forest. 

 

B) Well Ties 

 

Maui wells 1 and 2 were tied using reflectivity computed 

from sonic and density log data. The logs, wavelet and 

synthetics for the training and validation wells are shown in 

Figures 3 and 4. Statistical wavelets were used and the 
seismic data were rotated to zero phase based on the 

synthetic correlation. The seismic well ties had high (> .8) 

correlations for both the training (Maui-1) and validation 

(Maui-2) wells. 
 

Figure 3: Well tie on seismic data at Training well. 

Green lines indicate top and base of the reservoir. 
 

 
Figure 4: Well tie on seismic data at Validation well. 

Green lines indicate top and base of the reservoir. 

 
The phase-calibrated seismic data are input to the Spectral 

Extrapolation, and the well ties are used as calibration for the 

Random Forest machine learning prediction. 

 

C) Spectral Extrapolation 

 

Figure 5 shows the spectra of the original seismic data and 

Spectral Extrapolation. An arbitrary line through the original 

seismic data and spectrally extrapolated seismic data with 

overlain gamma ray logs is shown in Figure 6. 
 

 

 

Figure 6: Arbitrary line through original seismic data 
(top plot) and Spectral Extrapolation (bottom plot). 

Gamma ray logs are shown by black curves. Green 

circles show reservoir. 
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The accuracy of Spectral Extrapolation is limited by the 
signal-to-noise ratio and the accuracy/stability of the 

extracted wavelet. Thus, the process is performed in the 

stack domain, in which these data characteristics are 

naturally enhanced. The Spectral Extrapolation results are 

high cut at frequencies where noise begins to significantly 

degrade the result. This cutoff is estimated by the quality of 

the high frequency well tie. Thus, a balance between 

resolution and noise must be struck. Typically, the method 
produces at least a doubling of the original bandwidth with 

useful signal. Figures 7 and 8 show the high frequency well 

ties at the training and validation wells. 

 

 
Figure 7: Well tie on Spectral Extrapolation at Training 

well. Green lines indicate top and base of the reservoir. 

 

Figure 8: Well tie on Spectral Extrapolation at 

Validation well. Green lines indicate top and base of the 

reservoir. 

D) Random Forest prediction of acoustic impedance 

We predict the acoustic impedance in the 3D volume using 

a subset of attributes determined by training and validation. 

Our candidate trace attributes include the following: 

 
1: Mandal-Ghosh trend attribute 

2: input seismic 

3: first derivative 
4: second derivative 

5: instantaneous phase 
6: cosine instantaneous phase 

7: instantaneous frequency 

8: average frequency 

9: average phase 
10: quadrature 

11: integrated quadrature 

12: envelope 

13: derivative envelope 
14: integrated amplitude 

15: integrated absolute amplitude 

16: dominant frequency 

 

The stepwise regression method, which incrementally 

determines a subset of uncorrelated attributes that best 

predict the target log, was applied to the original seismic data 

at the training and validation wells (Figure 9). For 
consistency, the same subset is then computed for the 

spectrally extrapolated data. Each of these attribute datasets 

is then used as input to Random Forest. 

 

Figure 9: Step-wise regression for training and 

validation wells. 

 
The selected attributes are as follows: 

 

1: Mandal-Ghosh trend attribute 

2: quadrature 

3: input seismic 

4: cosine instantaneous phase 

 

The Mandal-Ghosh trend attribute is chosen to approximate 

the low frequency trend (Mandal and Ghosh, 2019) of the 

acoustic impedance using the seismic data, making it a 
useful input to the model. The results of the Random Forest 

prediction of acoustic impedance using both the original 

seismic data and the spectrally extrapolated data are show 
around the Maui-2 validation well in Figure 10. Note the 

improved differentiation of thin layers using the Spectral 

Extrapolation. 
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the suitability and advantages of using data processed by 
Spectral Extrapolation as input to machine learning rock 

properties prediction. Improved reservoir delineation and 

thickness definition can be observed throughout the section 

and at the reservoir level. Proposed future work includes 

more extensive mapping of the reservoir in 3D using the 

acoustic impedance volumes generated by this workflow. 

 

 

 

 

 

 
 

 

Figure 10: Random Forest applied to the original seismic 

(top) and Spectral Extrapolation (bottom). The white 

vertical lines indicate the Maui 2 validation well with the 
computed acoustic impedance log. Black boxes define the 

zoomed reservoir section in Figure 11. 
Figure 11: Zoomed reservoir section for A) the original 

The acoustic impedance zoomed to reservoir level together 

with the original seismic data are shown in Figure 11. The 

top and base of the reservoir are indicated by black 

horizontal lines. The black vertical lines show the Maui 2 
validation well with the computed acoustic impedance log. 

As previously noted, Random Forest prediction provides 

some improvement in resolution proximal to the training 

well as a consequence of the fitting or training process. 
However, broader bandwidth data more sensitive to lateral 

changes in rock properties are desirable to fully take 

advantage of the method. The Random Forest result with 

Spectral Extrapolation as input shows significant 
enhancements in imaging for the thinner portions of the 

reservoir. 

 

Conclusions 

 

In this work, Random Forest 3D acoustic impedance 

prediction was performed using conventional and spectrally 

extrapolated seismic data as input. The results demonstrate 

seismic data, B) acoustic impedance from Random 

Forest applied to original seismic data and C) acoustic 

impedance from Random Forest applied to Spectral 

Extrapolation – resolves the reservoir layer down to 

approximately 3 meters thickness. Timing lines are 
spaced at 10 ms. 
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